Deep Remix: Remixing Musical Mixtures Using a Convolutional Deep Neural Network
نویسندگان
چکیده
Audio source separation is a difficult machine learning problem and performance is measured by comparing extracted signals with the component source signals. However, if separation is motivated by the ultimate goal of re-mixing then complete separation is not necessary and hence separation difficulty and separation quality are dependent on the nature of the re-mix. Here, we use a convolutional deep neural network (DNN), trained to estimate 'ideal' binary masks for separating voice from music, to perform re-mixing of the vocal balance by operating directly on the individual magnitude components of the musical mixture spectrogram. Our results demonstrate that small changes in vocal gain may be applied with very little distortion to the ultimate re-mix. Our method may be useful for re-mixing existing mixes.
منابع مشابه
Remixing musical audio on the web using source separation
Research in audio source separation has progressed a long way, producing systems that are able to approximate the component signals of sound mixtures. In recent years, many efforts have focused on learning time-frequency masks that can be used to filter a monophonic signal in the frequency domain. Using current web audio technologies, time-frequency masking can be implemented in a web browser i...
متن کاملDeep Karaoke: Extracting Vocals from Musical Mixtures Using a Convolutional Deep Neural Network
Identification and extraction of singing voice from within musical mixtures is a key challenge in source separation and machine audition. Recently, deep neural networks (DNN) have been used to estimate 'ideal' binary masks for carefully controlled cocktail party speech separation problems. However, it is not yet known whether these methods are capable of generalizing to the discrimination of vo...
متن کاملEstimation of Hand Skeletal Postures by Using Deep Convolutional Neural Networks
Hand posture estimation attracts researchers because of its many applications. Hand posture recognition systems simulate the hand postures by using mathematical algorithms. Convolutional neural networks have provided the best results in the hand posture recognition so far. In this paper, we propose a new method to estimate the hand skeletal posture by using deep convolutional neural networks. T...
متن کاملA multi-scale convolutional neural network for automatic cloud and cloud shadow detection from Gaofen-1 images
The reconstruction of the information contaminated by cloud and cloud shadow is an important step in pre-processing of high-resolution satellite images. The cloud and cloud shadow automatic segmentation could be the first step in the process of reconstructing the information contaminated by cloud and cloud shadow. This stage is a remarkable challenge due to the relatively inefficient performanc...
متن کاملProvide a Deep Convolutional Neural Network Optimized with Morphological Filters to Map Trees in Urban Environments Using Aerial Imagery
Today, we cannot ignore the role of trees in the quality of human life, so that the earth is inconceivable for humans without the presence of trees. In addition to their natural role, urban trees are also very important in terms of visual beauty. Aerial imagery using unmanned platforms with very high spatial resolution is available today. Convolutional neural networks based deep learning method...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1505.00289 شماره
صفحات -
تاریخ انتشار 2015